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Session 2 Switching-Based Power Converters
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Session 5 Monitoring, Regulation, and References
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Self-Heating of GaN HEMTs Flip-Chip Design
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Proposed Two-Stage OP w/ UHGA I-V Curve of UHGA Stage
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Session 14 Hybrid DC-DC Converter
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Proposed 4-Phase Coupled-Inductor il 4-Phase Coupled-Inductor Design
Resonant Converter MnZn Fermite
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System Integration Scheme
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Proposed Current-Boosting CaS Converter
Proposed 4:1 Hybrid SC Charging- Proposed
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2 28510 FEgR Bt FeS %ga ALt 0|E soff 2™ AXto| Ts MZ|L} by

Z[Hol ofX| ==0| 75t E, HE AEIEYS
Qs x£7| 7+ Al CHEE HiHZ[ CHA, %2 %Etol BZ HAH(Gro)E BX STt
= ne[EF2 HESIAULL Gl MEE oHX|E 0|83l ICE &5t O|= HIHE|E
SHYCEMN, HIHE| 0| 2tA 80| & AELE RO JtsdICE FIH ez tHY QY
EE time-multiplexingdt0] & AXteb EfF FX|Ql £ JHA| HHX|R2RH &2 7t
o glo] oHX|E F=SIRUCE ZH =2 X QtSt= SHHAE 1ICE 7|EL] full-bridge

rectifier (FBR) CHH| 780% =<2 |t M3 == ds2 FdHGCt



( Bias- FI|p [2-3] Contrast of Pear According to Vear & Start-Up Speed

1 VB‘“ &| @ Periodic
bc; Vi or¢¢ PET

T

FHp
<~ e \
4
o l-- :JL ————— VED
| ¥ Limited Veer | r i Vear 1S i
rrr A t « StartUp - Voc Vear Fis.;.vzﬂiiﬂﬁ.ﬂmﬂﬂm
oo === 1 === PBAT max
o %" leneder Paur=0 Proposed Fast Start-Up Dual EH with Bat.-Independent SAECE
X Bat. dependent X Unsuitable for shock Main Power Stage Shock Periodic
[ Double Pile-Up [6] J Lleay
e AL v ETET
L ¢
JSPC;rR%.VPET z ;e
Ven ﬂ XNeg. GD f

*T\r\v/\ /AN o) ﬂv ﬂu ¢ L,
ghmm e )___ —-Vio V Even f fails to reach Veo — Can harvest
= Limited Vpn/ ------ A"VBAT g v Harvest from all excitation types
= b. A
t PET z

\ T ] ‘ﬂ‘ %_CP & t
de o [ e om L P le 3
5 = BAT max 1 + Veer - ? B{ secem ) wmam ¥ Aam )
o, Ponr=0 ¥ A A t

WBAZE. ¢ | v PET+PV dual EH v PET smooth mode transition

XBat. dependent X Unsuitable for shock
X If Vper fails to reach Vpar, it cannot harvest

v Ultra-low quiescent current  Only resonance duty modulation

[28 1] XNQtStE Battery-independent SAECES| &2t @12 & 7|& 7|&1t9| H|

#18-2= xidian universityOl Al HH?D =F2 =, Y™ Xl OHX| SHHARS 2ot
full-cycle full-bridge rectifier(FC-FBR)2} HFJF 5% 7|8t2| hill-climbing maximum power
point tracking(MPPT) 7|&& H|QtStCt 7|EQ| SHHAE 7|#e YW AXtol HI|7|A
ZAg0| oot &M= 2IHO|X|2H Aot A d&0M= 235|3 Ehedt full-bridge
rectifier 20t 280 HO{X|= ZH7t Aok 2 =22 0l2{¢ 2HE si&st7| {5t
full-cycle FBR TXE HMQSIRACE 7|E FBR2 &M AKX MU0 7 MLELC =2 M
oF OHXIE 2ot =2 EHO0| LUSIASL}, HOHSt= FC-FBR2 T AHO|Z0f A
AR 288 24510 o 2 oHX| Het J9nt =2 =352 2HSIQACh Eoh MR
=8 7|dtel MPPT 7|®#E MEZ HMtsiich =3 S XY 585h= i, 2EH
o3 MFol go| =3 ™M vzt Che E& 0[83t0] 58t M LX| g2 gio|
T P&O(Perturbation and Observation) ¥12|52 S MPPTE ZMSIQICE 5 ZAxt
Hotsl= 2|2= 91.3%2| Z|0f MEBe 288 HY4ACH, 7|& B AH|O[X| Y
E{S0| 100mV 0|29 T 2|ES EO|l= A1 Fal, 20mv O|FHe| 02 @2 =8
2| SSIRACE FIMH O E2 clock-multiplexingg &5H0 5 7HQ Y™ AXpof| CHE}HO]

o
=
7

E!
d= 7t 810l A OHX| ==0] 7hset AS HdENeE HIoIUt



ISSCC & JSSC [1-4] LB © Suitabl

4F Ay ?,‘ Rs LM CK I
n O
e Cr Rigid mass i Piezoelectric u
element = v
Ideal Nodel 1 e T rT
m 1] Vs ?
@ Model-Induced MPPT h o || Reetifier =
_ Deviation; 77777 77777 & Interface Mechanical Electrical
@ Suitable for Constant| ‘gt +.e © Enhanced MPPT Accuracy
Amplitude Vibration || emoce s Damper D © Wide Electromechanical Coupling Range

e for Constant Amplitude and Constant Excitation Vibrations

FBR ” Ve
—LPT
== T
L)
FC-FBR ” Ve
—LPT
= 2
RL
K

(28 2] M2tstE Full-cycle FBR(FC-FBR)S)

SE 2] % 7|= FBRIMQ| H|W

Simplified model with constant
vibration amplitude

Ce | Re
Ria2w?um
2[1+(R.Crw)?]

Simplified model with constant
vibration excitation

Rz

Pou =

I3
I I

L

Ip

Rr

Rp

|1 ]

IL@DCM: Pou=24"L T peak
fswis constant & current envelope

Zli2 peak

Cp | Re

Re: PZT Resistance; Rs: Rectifier Resistance;
Ro: Mechanical Damper.
P FnRia? [1+(R. Cpw)?]

°t "2+ 2(R.Cpw)? [D(1+(R.Crw)?)+R.a?]?

follows sinusoidal|distribution

y
Pouto= X 1L pea Comparison

(nonlinear) Zlu pear

5 Vs P&0-MPPT based PWM
-E f[ -
£9 | + s © Adaptive multiple
E 5 |Z Rectifie i MPPT parameters.
&% N © Only sense ..
= B
o a \‘ —
by VPPT R=ViWl\
=) @PT >
- Inductor current at DCM: Rw=2L/(fswT?on)=R1 Ton,opt Tow

.

OI_

[28 3] Metdt= T
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0| 2025 ASSCC2| Session 60| A= Imagers2te FHZE & 4HO| =20| LYHEL|QULCE

#27-1 O] =22 7|Z 1/Q 7|8l bio-impedance readoutO| 7tX|= F 7tX| 8tA, & 1)
CG2t RFE 7He| QEX[AH-O0|EXAE Qlsl L/¥St= magnitude/phase =2 X[, 2) DC St
St 0| LPF settling AlZt IfEO| LdSt= EME SiZASH| et MER phase-
locked sampling(PLS) 7|8k EIS ICE H|QFetCh MQtEl FZ= pseudo-sine current
generatorO| C{3l, target impedance?t 7|& X (RREF)Z &A|0| ZHESt= dual-AFEE
AL SIEE ZF B2E IF YO capacitive-coupled IAS Sdf 3= ZHEE F|, VREFO
zero-crossing®ll |4 S7|El sampling clocke O|&3l VM1t VREFE X MEZsHC}
F7| &t 0°/90°/180°/270°2| 4-%|&E FESIH =5 d22 o F7|¢o 7+
UL ZoHo =z PFo| Y S DC 20t O A4 €38 + AN WE ODRO| 7ts
ZICt Sampling PLL(SPLL)= At&0| E|[}=0l, VREFZ} VCMIF BHe Q| phase locked
EtO|Y= O|85t0] phase delay =H|E Sl ZASERALE.SPLLZ sampling-phase detector®f
frequency-locked loop(FLL)E 2, 2 A&XI0|A & FLLO| WEH frequencyE +=H
AlZICE 180 nm 3EL2E HMZE H2 4 kHz IFOIAM SZHSHH, 4 kS/s ODRS *E'ﬁdojtk 20
O~4 kQ HROM M 5E QA= 04% O|SH0|H, 4 kHz~2 MHz dH| YmEHA =E-
Z’30|M magnitude At 1.78%, phase At 1.8°F EHSCE SPLL HF HEE= o
7| O[LHO M =HE (T, 100 kQ 2HAO0IM 394 dB 0|5 ZZ0|M 40000742 ME0| 2]
S0 BEHAE 349 mQ/iVHZE ERACH
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Application Conventional BioZ Measurement System

Real-time @ Low Throughput

| " g

-

Long Settling Time of LPF

a ® Low Accuracy
Vil = lee AulZ]
2V =206+ 2IA+ 22

Proposed BioZ Measurement IC

Current Generator (CG) Phase-locked Sampling
<—| Look-up Table |

Pseudo-sine

s —T G Generator | ICurrent Reference | SIS D oug ket
& Sampling-based
'g Impedance
Demodulation
= \ Track NS-SAR 4
% f.=~f; Y . Ho&Id K ADC Do | @ High Accuracy
E ‘o A Gain/delay Error Cancellation
2 ’—( using a Known Rrer and SPLL
L 3 C
o
] \f Veer San;;g:gl_ }PLL o 0er IF Pre-demodulation
o © Wide Frequency Range
Readout Front-end (RFE) © Low Power Consumption

[ 1] #27-10M 7|EQ| #+x2F H|etst bioz FF IC

#27-2 1% ™ (high-density), CHH E (high-channel-count) 414 7|8 ZHEE(FE)QM =
HAY XAzt xME 8 #LMOl FLSHH, O0|F 6| direct time-division
multiplexing(DTM)-FE &7} 2] A& &[0 2ACL SHX|TH DTM2 HE AQE0o| 2fdl
SSRE ZHA(CMNO] ok B0 HX[7| MZ0f f=ut Zot7t 7|E FxE0 24

i

LHMSICH O] =2 0|2{ot &XE dilZ3H7| 2l active feedforward CMS(AF-CMS)
HMetettt s1 s 2t MEel CMIE 28 HINAH(Cn Ol ME 2] MESHL, S20f A
CnOl CMIE HMAHTH F differential-mode(DM) 2158t ENtA|IZICH DM AT =
continuous-time 2nd-order incremental ADC(IADC)2| fine loop(DPCF-Gm)2} coarse
loop(DM tracker)& & XNz2|&Ct. MEE uH0|AM ZWSt= kT/C noise= chopping=
% DM Z=Z0|M HAHELD, Cy2 HEHO 25 57 M0 U YJO|HA Mot
eICt EDH AF-CMSE= MEE 7|890|E2 Gm variationOf 2} residual CMIZt HE =
ALt O|F SiZSH7| &3 =22 GmE F& 2H0f| ZFA|7|= FERE XESIRUCE IDAC
= RsE &9 LEY FxE AMEYLEM HEZ 0[50| (IDACRs)-12 17FE[0 Gm
Hatof deks X =Lt SHX2E Gm degeneration@ 2 QI8H W2 Gmit F7HEl O]
= 7] 28, =22 dual-path current-feedback(DPCF)-Gm S H% 8F Gm
2 FYA7|l= +EE HEIIRULE 180nm CMOSE A E 8XY
S

o
M2 Al 10 mVpp, 40 Hz CMI =AM 119 dB2| peak CMRR

nr e o> o



2 2d6i B 34 dBel M =HE E L EBH 100 Hz, 700 mVppll 012 & CMI &
SO ME ZBtE|X| 2410 514 dB SNDRZ2 X8, €2 common-mode HOAZ QHF
Mol 20| 7tsEg YBSIRACL IRNE AF-CMS X8 050 M2 Xjo|7} 79|
XCtEl CMS7F O|=E FJ7HAIZ|X| a2 ZQISHRUCE HASEl neural signal A A
(LFP, spikes)OIME AL= Qo &2 &2H(R=0.998), 5L% spike AE W+E B2,
7|Z DTM FEs CHH| 71 =2 CMRRI 7t& H2 CM "RIE MSoChe "ol 37
22 SOl
(a) Existing CMS Solution
c, Feedback delay Z
N:1 Cris v, H_L l' ] Vo
V1o--o-1- cco
T o,
Vzo--o-—:b- C T
Zink - V2 Vor
> kT/C Noise * Induced » Noiseless
» Z,y degradation kT/C noise » No Z, degradation
» High speed » Limited speed
(b) Proposed AF-CMS in DTM Architecture
Robust to residual Ve
,DACPUSH
> Noiseless
Vjoto—o » No Z,, degradation
LF(s)| { ADC » High Speed
Vaore— 1 » Applicable to DTM
N:1 S2&fcn S
Rejected KTIC noise L Ioac,purt s 2Ts (~200ns)
3 ) e
k’ FaldingtaDi) fCHmaduI:‘trt;g_> L3 LD S; i
Random few I L
| KTIC noise S f S; faw feu F S; faw feu F J
[38 2] 7|&EQ| CMS solutiont H|2tSH AF-CMS in DTM T+&
XMXPER
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2025 ASSCC Session 30= Transceiver 2H, 2L M A
Aot AW MO interfaceE AJWStD QUCH

=

oh @40 SHFHL0| Adaptivet EFNHE S&E
o |
—

fo
Sl
>
u
>
>
]
30
H

=
S

—
OlM MTEHoR oHXzesdES 4dXdte =220 Y -
= 1 U= Chiplet interfacel| HHEE OHFELD As =& 270 HHE 0EO|C}

#30-1 2 =F2 7}0|AE, FHLICH Marvell 2|1 SK HynixOM 3& ZED =F22

2.5D chiplet packaging®ll Al O|f+7} &l Crosstalkdt 2= #310]| CiDt toleranceE %
interface solution= A|QtotCt 22 HEO| HOM &2 HO|HZE2| transceiver

TH5H7] 2|8l single-ended data lanel| ZtZAO0| HA™ FOIX|1, A2 Qldf
Capacitive coupling@ 2 Q1%+ Crosstalk(XT)0| & Z}FEICE PAM-40{A] O] HHA2 O F
E2XH SNRE&0| HA5HAH E=0, O[F diZ5t7| ?I3f & ==2 adaptive
Crosstalk EqualizerE Z=QSIRACE XT2| £d1F &Lt High Pass Filterg &8930
Datad| Z3tEl XTHES MAHSH= YA 0|0 Least Mean Square(LMS) €12|ES &
off filter2| cutoff frequency@t DC gaing ZHSHA EICL LMSE &% filter S42| X
Mzt XTE {ESh= Aggressor?| 4=zeb XTo| &2 =2 Vicdimil=e
Equalizing ZatE Jedll O|F XA E|=0|, Victime| XT7F LAl aggressordf Hek
= T+ mutual XTE HX[5}7] 23l Inversion Clock signal2@ aggressor® Z-&35t%
Ct =7IX 92 calibrationO] Z &=l replica TIAZ RX Front-endOf| X-&83lf -25~115°C
o Yo 2z 30| i3t Common-mode mismatchE 3mVEZEC=2 EQCH 1 &4
1F PAM-4 Az g 7+ 2tAo| EUX|E LIEILH= Ratio-Level Mismatch(RLM)2 83%
Ol 97%2 SHMAIZIOH crosstalkO] E&HEl clock| rms jitter d&2 10.49ps0flA
217ps2 M AIZACE 1E-122] BEROIA 0.11UI12] Bathtub X|EE EJL, HS 2%
H3t0| A 0.02UI12] M2 Eye opening variation2 E RALCH

i

i F|>+



Channel Adaptive Crosstalk Equalizer

Drx-imo P Ial mOu'c ut| _
Hxte
Dpx.ourt ‘
Dpx.in I =¥ | "
i + ! g =
Hxrc 4L<
CLKRrIN T T 2L oMLz

5 5

W{P We
~1CLKBRrx-.in CML2
- i r [ CMOS
L A |2 XTCrle o
Tp-xT1C

Dy

f—

Dy

CLKB

(a)
~CLKBrew——{ § ——00—[p~[Z W,

Dpyour1—— |
XTCr A F G {E—» W

. Magnitude (dB)
b b b
Qo

=
[=]
=]

Wep(n#1) = Wg(n) — - sign{CLKBrxan) - sign{Drx-outi)

10 107 _ 10® 10° 10" 10"
Frequency (Hz) Wg(n+1) = Wg(n) — p-sign(XTCg) ' sign(Dgrx.out1)

(b) (c)

[13 1] Adaptive crosstalk equalizerE O|-&%+ PAM-4 Transceiver?| T4

#30-2 = E2UtuoM HES =222 23 HO0|E2| Transitions
oF = =

7
A A
g 77

= [LE I =
St M22 $547] #2& HMetetth 2 ¢+= Die-to-Die 2/E 0] S
AOM, Capacitor 7|2t 47| 5 &40 = HAY Z7teb HHAHQ BHZO|(run

dFAIO

length) 2M|E SilZ25t7| 23l Ml 7tX| EZ8= MAlStCt
XM, AC-coupling Capacitor® &X7|(TX)2t #=A7|(RX)7 &3|st=Z 3l06] G|O|H
Transition® & X[St= HAlE = YRUCL
=M, ¢ HolHo DC Mo El Low levelA{= PMOSE, high levelofAl& | E=HH
7|8F NMOSE B oz A& HOIHE HEXez 45t =& H ULt
AW, ZHERSE inverter Z|8F RXE &89t ¥ OIO[E{2| middle voltageE inverterl)
trip-point =X 2 FYEAHA % HEEdS =SEUCH

7|8k NMOSOf| A et 5= QU= AC-coupling 7HTH
AlEf induced transition feed-throughZ QI3 eyel| Low DC level Otz 22| undershoot
HMES HAGHT| 8l capacitors F7IEtCZM Eye marging E |G
Hetel &5471= 9F 0002 m22| 042 A2 THXNIF 11889 Tb/s/mm/pl/bite] &2

FoM(Figure of Merit, It2| CHH| Effective Bandwidth)2 7|E35lH 243t 458 YT HCL

£73| High—Low TransitionA| I|E=&H



Simplified Circuit Diagram of the Proposed Transition-Driven Transceiver

Low -> High Transition

300mV

Dn="0'3"1' v _ o /T )

oD amplitude
*Vopa=0.3V, Vpp=0.8V Vooa = CTRAN"(CTRAM+CTR}'3OUmV

o B Y 0
o - Wy
D'""'I PU Crran|i B00mMY

RX INCParEBUF IN  BUF_OUT
—— i tUV

High -> Low Transition
Dn="1"=2"0'

*Vopa=0.3V, Vpo=0.8V

D[P0

RX_IN CrarE BUF IN

T\ ___ o
RX_IN
AC amplitude = o

v = Crranl(Crran+Cpag)-300mV
bpa i
Wy
,
Pi _[BUF_IN 300mv
Crran t

800mV
BUF_OUT EUF_OUT\—
I—, o

t

*Vrip = Inverter Trip-Point Voltage **Vi= Voo - lnigh(Ronnt+Ronnz)
luicw = 10 pA; NMOS is small to minimize power consumption,

[2& 2] M 2=l Transition-driven transceiver®| operation
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P

2% Mgtigtn
HL-20f : Reference-less CDR/High-Speed Wireline
Interface
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